
thirdweb A-18
Security Audit

April 5th, 2024
Version 1.0.0

Presented by 0xMacro

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from March 27, 2024 to March 29, 2024.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Medium 1 - 1 -

Low 3 - 2 1

Code Quality 7 - - 7

Gas Optimization 1 - - 1

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

A audit handoff document provided through Notion.

Trust Model, Assumptions, and Accepted Risks (TMAAR)

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash: b44b56363230afcfe5e9c8dbdccf654c54182467

Repository: contracts-pay-gateway

Commit Hash: f2db1bffe10cc8b455640d054940f5b7ef330208

We audited the following contracts within the contracts repository:

Contract SHA256

contracts/prebuilts/unaudited/airdrop/Airdrop
.sol

74f76f1f1f05c7d083b0355dcfc4ef9f06a
8c8f5a4f4533a00ca948a2a8ce244

We audited the following contracts within the contracts-pay-gateway repository:

Contract SHA256

src/PaymentsGateway.sol 1d378d4aa6360496829591233d446ae4fb5
ee48fecfb3796074e394283e7e81c

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

M-1 Pulling tokens after initiating the token purchase potentially fails

L-1 Airdropping tokens using push or signature-based methods can be griefed

L-2 Completing the token purchase potentially locks native tokens

L-3 Initiating the token purchase doesn’t correctly account for fee-on-transfer tokens

Q-1 Missing natspec documentation

Q-2 Make processed mapping public

Q-3 Unused error definition

Q-4 Use separate events for each airdrop type

Q-5 Use safeTransferETH instead of low-level call

Q-6 Missing native token support for claim and signature-based airdrops

Q-7 Contract signatures not supported

G-1 Use verifyCalldata to verify Merkle tree

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client

should give to fixing the issue. We assign severity according to the table of guidelines

below:

Severity Description

(C-x)
Critical

We recommend the client must fix the issue, no matter what,
because not fixing would mean significant funds/assets WILL
be lost.

(H-x)
High

We recommend the client must address the issue, no matter
what, because not fixing would be very bad, or some
funds/assets will be lost, or the code’s behavior is against the
provided spec.

(M-x)
Medium

We recommend the client to seriously consider fixing the
issue, as the implications of not fixing the issue are severe
enough to impact the project significantly, albiet not in an
existential manner.

(L-x)
Low

The risk is small, unlikely, or may not relevant to the project in
a meaningful way.

Whether or not the project wants to develop a fix is up to the
goals and needs of the project.

(Q-x)
Code Quality

The issue identified does not pose any obvious risk, but fixing
could improve overall code quality, on-chain composability,
developer ergonomics, or even certain aspects of protocol
design.

(I-x)
Informational

Warnings and things to keep in mind when operating the
protocol. No immediate action required.

(G-x)
Gas

Optimizations

The presented optimization suggestion would save an amount
of gas significant enough, in our opinion, to be worth the
development cost of implementing it.

Issue Details

M-1 Pulling tokens after initiating the token purchase potentially fails

TOPIC

Locked Funds
STATUS

Wont Do
IMPACT

High
LIKELIHOOD

Medium

In the PaymentsGateway contract, when calling initiateTokenPurchase with some

ERC20 token set as tokenAddress , the specified tokenAmount is transferred to the

PaymentsGateway contract and approval is given to the forwardAddress :

The expected behavior of the forwarder contract is to pull the tokens from the

PaymentsGateway contract in the same transaction as initiateTokenPurchase . However,

as this can’t be guaranteed for all forwarder contracts, the following issue can occur:

1. initiateTokenPurchase is called with tokenAmount of 10_000 and forwardAddress

of 0x123 .

2. At this stage, the PaymentsGateway token balance is 10_000

3. Before the tokens are pulled by the forwarder contract, another

initiateTokenPurchase is done with tokenAmount of 1_000 using the same

forwardAddress of 0x123

4. Now, the PaymentsGateway token balance is 11_000

However, the forwarder contract can now only pull 1_000 tokens instead of 11_000 , as

this was the latest value that was approved. The issue occurs because on the

safeApprove call, the exact tokenAmount is set without considering any previous

approvals that have not yet been pulled.

Remediation to Consider

Increase the allowance by the tokenAmount instead of setting it exactly to the

tokenAmount .

RESPONSE BY THIRDWEB

L-1 Airdropping tokens using push or signature-based methods can be
griefed

TOPIC

Griefing
STATUS

Wont Do
IMPACT

Medium
LIKELIHOOD

Low

In the Airdrop contract, the push and signature-based airdrop methods are susceptible to

a griefing attack. When iterating over the array of provided _contents , execution control

is given to the recipient in certain situations, depending on the token standard and airdrop

type being used:

airdropNativeToken gives execution control to the recipient when executing the

low-level .call method.

airdropERC20 gives execution control to the recipient by internally calling

tokensReceived hook when the provided token is compatible with ERC777 standard.

airdropERC721 gives execution control to the recipient by internally calling

onERC721Received hook.

airdropERC1155 gives execution control to the recipient by internally calling

onERC1155Received hook.

As a result, a recipient contract can execute malicious code, such as consuming all the

provided gas. If this occurs, calls could cost substantially more than expected or exceed

the block gas limit, preventing calls from executing.

If this happens, the owner could always execute the airdrop again by omitting the

malicious recipient for push-based airdrops. For signature-based airdrops, the owner

would need to create a new signature excluding the malicious recipient.

Remediation to Consider

Explicitly pass in the amount of gas for the transfer, ensuring there is enough gas to

allow the contract to execute normal operations, but not provide the entire gas of the

transaction that can be used maliciously.

As a minimum, appropriate comments should be added to the susceptible airdrop

functions, making above shortcoming clear to any caller.

RESPONSE BY THIRDWEB

L-2 Completing the token purchase potentially locks native tokens

TOPIC

Locked Funds
STATUS

Fixed
IMPACT

Medium
LIKELIHOOD

Low

In PaymentsGateway’s completeTokenPurchase , native tokens can get locked in the

contract in the following ways:

1. User accidentally sends msg.value > 0 when specifying an ERC20 token as

tokenAddress . All msg.value passed will be locked.

2. User sends msg.value > tokenAmount when specifying the native token as

tokenAddress . The excess amount (msg.value - tokenAmount) will be locked.

The owner of the contract could withdraw locked tokens and give back the overpaid

amount to the user via the withdrawTo function. However, it is recommended to prevent

above scenario in the first place.

Remediation to Consider

In case of tokenAddress is an ERC20 token, don’t allow msg.value > 0 to be passed

and in case of tokenAddress is the native token, make sure msg.value ==

tokenAmount

L-3 Initiating the token purchase doesn’t correctly account for fee-on-
transfer tokens

TOPIC

Protocol Design
STATUS

Wont Do
IMPACT

High
LIKELIHOOD

Low

In PaymentsGateway, the initiateTokenPurchase function doesn’t correctly account for

tokens that apply a transfer tax, which results in less value transferred than the

tokenAmount specified.

However, the tokenAmount is approved to the forwardAddress , allowing the forwarding

contract to pull the full tokenAmount , rather than the tokenAmount - fees :

Remediation to Consider

To handle fee-on-transfer tokens correctly, calculate the contract’s balance before and

after the safeTransferFrom call, and approve this difference instead of the full

tokenAmount .

Q-1 Missing natspec documentation

TOPIC

Documentation
STATUS

Fixed
QUALITY IMPACT

Medium

The Airdrop contract is entirely missing appropriate natspec documentation. Note that

natspec documentation is considered as good practice to make the intent of the

function clear to users.

Remediation to Consider

Add natspec documentation for all the functions, or at least for the external ones.

Q-2 Make processed mapping public

TOPIC

Interoperability
STATUS

Fixed

Fixed

QUALITY IMPACT

Medium

In the Airdrop contract, the processed mapping is used to track already processed

requests and prevents replay attacks. This information can help users or other contracts

to check the status of a request using the request Id. However, because the processed

mapping is declared as private , the processed status cannot be retrieved easily.

Similar issues exists with the processed mapping in the PaymentsGateway contract.

Remediation to Consider

Make the processed mapping public .

Q-3 Unused error definition

TOPIC

Documentation
STATUS

Fixed
QUALITY IMPACT

Low

The Airdrop contract declares the following error

error AirdropInvalidTokenAddress();

However, this error is not used anywhere in the code.

Remediation to Consider

Remove the above error declaration.

Q-4 Use separate events for each airdrop type

TOPIC

Events
STATUS

Fixed
QUALITY IMPACT

Low

In the Airdrop contract, the same Airdrop event is emitted for both the push-based as

well as the signature-based airdrops, whereas for the claim-based airdrops, a separate

AirdropClaimed event is emitted.

Remediation to Consider

Use separate events for push and signature-based functions to make it clear which airdrop

type was used when the event is emitted.

Q-5 Use safeTransferETH instead of low-level call

TOPIC

Consistency
STATUS

Fixed
QUALITY IMPACT

Medium

In the withdraw function, SafeTransferLib.safeTransferETH is used to transfer native

tokens to the caller. However airdropNativeToken , uses the low-level call directly:

Remediation to Consider

For readability and consistency reason, use safeTransferETH in the airdropNativeToken

function to transfer native tokens to the recipient, instead of using the low-level call.

Q-6 Missing native token support for claim and signature-based airdrops

TOPIC

Protocol Design
STATUS

Fixed
QUALITY IMPACT

Medium

In the Airdrop contract, all of the three types of airdrops naming push-based, signature-

SafeTransferLib.safeTransferFrom(req.tokenAddress, msg.sender, address(this), req.tokenAmount);
SafeTransferLib.safeApprove(req.tokenAddress, req.forwardAddress, req.tokenAmount);

SafeTransferLib.safeTransferFrom(req.tokenAddress, msg.sender, address(this), req.tokenAmount);
SafeTransferLib.safeApprove(req.tokenAddress, req.forwardAddress, req.tokenAmount);

(bool success,) = _contents[i].recipient.call{ value: _contents[i].amount }("");

Looking at the forwarders we plan to use, the forwarder will pull the tokens in the
same transaction. Also, it may add extra steps to keep track of allowance and set it to
an increased value etc. We'll add this change if we use other forwarders in future that
require this kind of setup.

Gas estimation should be able to detect if a griefing recipient is in the list.

Need an audit or want to learn more about Macro’s services? Submit an Inquiry or Message on Telegram

https://0xmacro.com/
https://github.com/thirdweb-dev/contracts-pay-gateway/pull/6/commits/caf72cb921608caac1d41cf94e8a861a0d95d317
https://github.com/thirdweb-dev/contracts/commit/a3f9f2731ee2c0fdf84980180f6a1aad1422854a
https://github.com/thirdweb-dev/contracts/pull/634/commits/29f02ccf34b4213f77274d53a9a223de54ead3a9
https://github.com/thirdweb-dev/contracts-pay-gateway/pull/6/commits/7bb507660d33a79651bdf6ea923cb8f9097c92d1
https://github.com/thirdweb-dev/contracts/commit/6bb17f205d38da2c0cca030553da05c585183a79
https://github.com/thirdweb-dev/contracts/commit/fb8595a65f98815710baf6552614520493516b74
https://github.com/thirdweb-dev/contracts/commit/fbde069b3b9006ee85ec23d7f1403a60721a1d20
https://github.com/thirdweb-dev/contracts/commit/3d418a9c6c19f6ce97e74991ddc2db7c8d8355e1
https://github.com/thirdweb-dev/contracts
https://github.com/thirdweb-dev/contracts-pay-gateway
https://0xmacro.com/
https://t.me/haileybf

In the Airdrop contract, all of the three types of airdrops naming push-based, signature-

based and claim-based support airdropping ERC20, 721, and 1155 tokens.

However, in the current design, only the push-based airdrop supports native tokens.

Remediation to Consider

Add native token support for signature-based and claim-based airdrops.

RESPONSE BY THIRDWEB

Q-7 Contract signatures not supported

TOPIC

Protocol Design
STATUS

Fixed

Fixed

QUALITY IMPACT

High

With the current implementation, ECDSA.recover is used for the signature-based airdrops

to verify signatures. However, ECDSA.recover only supports normal EOA signature, but

doesn’t support contract signatures with EIP-1271 standard.

Remediation to Consider

Add EIP-1271 support to allow contract such as smart wallet creating and verifying

signatures.

G-1 Use verifyCalldata to verify Merkle tree

TOPIC

Gas Optimization
STATUS

Fixed
GAS SAVINGS

Low

Solady’s MerkleTree library offers two ways to verify a provided leaf is in a Merkle tree, one

where the proof is provided as memory with the regular verify() function, and another

that takes the proof as calldata using verifyCalldata() . When a user claims tokens

and provides a proof, it is passed in as calldata , since it is not altered during execution.

calldata is cheaper to read than memory, which leads to less gas consumed for users to

verify their claims if the function verifyCalldata() is used rather than verify() .

Remediations to Consider

Replace the call to verify() with verifyCalldata() to save users gas when claiming

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the thirdweb team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

We won’t be adding native token support for these.

https://github.com/thirdweb-dev/contracts/commit/3e3d176fd62ddcb304a294c5f7b2c3af943f5fe2
https://github.com/thirdweb-dev/contracts/pull/634/commits/19c01204b60add4cd057317f0b3c0028b74dd987
https://github.com/thirdweb-dev/contracts/commit/7d234112ded842736d8ca2f8ae2e742d50a0eab5
https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol

