
thirdweb A-7
Security Audit

December 21st, 2022
Version 1.0.0

Presented by 0xMacro

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from November 28, 2022 to December 7, 2022.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Critical 1 - - 1

High 2 - - 2

Medium 3 - - 3

Low 1 - - 1

Code Quality 8 1 1 6

Gas Optimization 3 - 1 2

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

Relevant documentation for the in-scope contracts.

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash: 99c889c3f08868f8193d98d5ab82bb1ff8ecea75

Specifically, we audited the following contracts as part of TokenStake contract audit:

Contract SHA256

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/interfaces/IWETH.sol 839869bd411a4e68c9a59d2a0c394a08764
1eeeadeda4956a255dc3179110cc3

contracts/openzeppelin-
presets/token/ERC20/utils/SafeERC20.sol

569cd0b266ff404aeac1a4266a1535121e4
7907ef1dcea2d55f4c036a11f758e

contracts/eip/interface/IERC20.sol f26adf2080a8611b95fb06653a7476aade9
dfae3fcc36b212aee46e0aa914f7f

contracts/lib/TWAddress.sol e63c27c95600ee1886258f2e588bc6e00a8
b6224bfba341c1b05a78baa3755e1

contracts/extension/ContractMetadata.sol e2b7ba9418f86c2049b1ad85faae6d019bc
f432307b61f36eeb025d3be77c615

contracts/extension/interface/IContractMeta
data.sol

f0b7ac93fba3fbb8a71bd76da822cceec0f
a86b20418835a228c67d06176eaec

contracts/extension/PermissionsEnumerable.
sol

e11e8f40eb775c0ccc34b746b03a08e584f
626b94fdde1396f538c3a76c487d4

contracts/extension/interface/IPermissionsEn
umerable.sol

b4958ce026d4c0c93dae5e671aabed24653
1c448e1e081d0ba6dc590c3377393

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/extension/Permissions.sol 645d29f8042f1318e9b307f5e85e4408bde
24ee6fcb81202a82e23cd8b549587

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/lib/TWStrings.sol d1fa327e26529fe1048a230a9fdaa183da2
1f9418729b665e0d57f68f136de0b

contracts/extension/Staking20Upgradeable.s
ol

16bc29a644b43fb9d1c29fd11d06e502d35
1934e51c1ae127e113dac8c3bf713

contracts/extension/interface/IStaking20.sol 3bf8b010deb83bc35f3fd2c1a3fef2dd0cc
679108cfcd19003dceb1dd9619259

We audited the following contracts as part of NFTStake contract audit:

Contract SHA256

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/interfaces/IWETH.sol 839869bd411a4e68c9a59d2a0c394a08764
1eeeadeda4956a255dc3179110cc3

contracts/openzeppelin-
presets/token/ERC20/utils/SafeERC20.sol

569cd0b266ff404aeac1a4266a1535121e4
7907ef1dcea2d55f4c036a11f758e

contracts/eip/interface/IERC20.sol f26adf2080a8611b95fb06653a7476aade9
dfae3fcc36b212aee46e0aa914f7f

contracts/lib/TWAddress.sol e63c27c95600ee1886258f2e588bc6e00a8
b6224bfba341c1b05a78baa3755e1

contracts/extension/ContractMetadata.sol e2b7ba9418f86c2049b1ad85faae6d019bc
f432307b61f36eeb025d3be77c615

contracts/extension/interface/IContractMeta
data.sol

f0b7ac93fba3fbb8a71bd76da822cceec0f
a86b20418835a228c67d06176eaec

contracts/extension/PermissionsEnumerable.
sol

e11e8f40eb775c0ccc34b746b03a08e584f
626b94fdde1396f538c3a76c487d4

contracts/extension/interface/IPermissionsEn
umerable.sol

b4958ce026d4c0c93dae5e671aabed24653
1c448e1e081d0ba6dc590c3377393

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/extension/Permissions.sol 645d29f8042f1318e9b307f5e85e4408bde
24ee6fcb81202a82e23cd8b549587

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/lib/TWStrings.sol d1fa327e26529fe1048a230a9fdaa183da2
1f9418729b665e0d57f68f136de0b

contracts/extension/Staking721Upgradeable.
sol

e5790681a79244dc79ac78554ed3802d7dd
5e8e6df6a961eba17e76f4b975550

contracts/extension/interface/IStaking721.sol 9575a51df8e3c950d53ab4916ef50ad6069
8f59267484cc77cd98841e247629d

We audited the following contracts as part of EditionStake contract audit:

Contract SHA256

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/interfaces/IWETH.sol 839869bd411a4e68c9a59d2a0c394a08764
1eeeadeda4956a255dc3179110cc3

contracts/openzeppelin-
presets/token/ERC20/utils/SafeERC20.sol

569cd0b266ff404aeac1a4266a1535121e4
7907ef1dcea2d55f4c036a11f758e

contracts/eip/interface/IERC20.sol f26adf2080a8611b95fb06653a7476aade9
dfae3fcc36b212aee46e0aa914f7f

contracts/lib/TWAddress.sol e63c27c95600ee1886258f2e588bc6e00a8
b6224bfba341c1b05a78baa3755e1

contracts/extension/ContractMetadata.sol e2b7ba9418f86c2049b1ad85faae6d019bc
f432307b61f36eeb025d3be77c615

contracts/extension/interface/IContractMeta
data.sol

f0b7ac93fba3fbb8a71bd76da822cceec0f
a86b20418835a228c67d06176eaec

contracts/extension/PermissionsEnumerable.
sol

e11e8f40eb775c0ccc34b746b03a08e584f
626b94fdde1396f538c3a76c487d4

contracts/extension/interface/IPermissionsEn
umerable.sol

b4958ce026d4c0c93dae5e671aabed24653
1c448e1e081d0ba6dc590c3377393

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/extension/Permissions.sol 645d29f8042f1318e9b307f5e85e4408bde
24ee6fcb81202a82e23cd8b549587

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/lib/TWStrings.sol d1fa327e26529fe1048a230a9fdaa183da2
1f9418729b665e0d57f68f136de0b

contracts/extension/Staking1155Upgradeable
.sol

a7c9d1a429a83e8dcac52d57cd30f41fde6
7562620385f251c3f764ce9c4ad39

contracts/eip/interface/IERC1155.sol 5e39ff49f56e075e5111dd66a8d83a153ae
d331ef5af8762f491247295cd542a

contracts/extension/interface/IStaking1155.s
ol

fa855b955f07067c48640f60f887f5fff03
8408b97f797c56ef3b982ca6cb763

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

C-1 Contract admins can lock staked tokens in the contract

H-1 TokenStake.sol rewards can be over- or under-awarded when the staking and reward

tokens have different decimals

H-2 TokenStake.sol: Tokens with a tax on transfer will account for inaccurate amounts

M-1 Block gas limit can be exceeded during setTimeUnit() and setRewardsPerUnit()

when staker count grows

M-2 ERC721 and ERC1155 tokens safe-transferred directly to contract will be locked and

unrecoverable

M-3 TokenStake.sol: Double entry-point ERC20 tokens could be drained from the staking

contract

L-1 Incorrect ERC165 implementation for NFTStake and EditionStake

Q-1 NFT tokens do not transfer via safeTransferFrom() during stake()

Q-2 Normalize support for ERC2771 trusted forwarder

Q-3 Reentrancy init called twice

Q-4 Duplicated logic is prone to introducing defects during customization

Q-5 unitTime and rewardsPerUnitTime setter functions don’t check for new input data

Q-6 getStakeInfo should be external

Q-7 Missing reward balance information

Q-8 Staking1155Upgradeable claimRewards function for each token id

G-1 Halt array iteration after staker removed during withdraw()

G-2 Loop reading from storage array length

G-3 High gas when calling both setTimeUnit() and setRewardsPerUnitTime()

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client

should give to fixing the issue. We assign severity according to the table of guidelines

below:

Severity Description

(C-x)
Critical

We recommend the client must fix the issue, no matter what,
because not fixing would mean significant funds/assets WILL
be lost.

(H-x)
High

We recommend the client must address the issue, no matter
what, because not fixing would be very bad, or some
funds/assets will be lost, or the code’s behavior is against the
provided spec.

(M-x)
Medium

We recommend the client to seriously consider fixing the
issue, as the implications of not fixing the issue are severe
enough to impact the project significantly, albiet not in an
existential manner.

(L-x)
Low

The risk is small, unlikely, or may not relevant to the project in
a meaningful way.

Whether or not the project wants to develop a fix is up to the
goals and needs of the project.

(Q-x)
Code Quality

The issue identified does not pose any obvious risk, but fixing
could improve overall code quality, on-chain composability,
developer ergonomics, or even certain aspects of protocol
design.

(I-x)
Informational

Warnings and things to keep in mind when operating the
protocol. No immediate action required.

(G-x)
Gas

Optimizations

The presented optimization suggestion would save an amount
of gas significant enough, in our opinion, to be worth the
development cost of implementing it.

Issue Details

C-1 Contract admins can lock staked tokens in the contract

TOPIC

Locked Assets
STATUS

Fixed
IMPACT

High
LIKELIHOOD

High

In all three staking contracts, administrator role members (DEFAULT_ADMIN_ROLE) have

permission to set and change the staking parameters rewardsPerUnitTime and

timeUnit .

By setting timeUnit = 0 , the _calculateRewards() logical math would try to execute a

division by zero and, by setting rewardsPerUnitTime to a high value such as

type(uint256).max , the operation will result in an overflow. Both of these parameter

configurations will make every attempt of the user to withdraw, stake new tokens, or

claim rewards revert, essentially breaking the entire contract and locking the existent

tokens in the staking contract.

In the latest case, the value of rewardsPerUnitTime could be less than the max value,

depending on the time lapsed and the amount staked.

These conditions are irreversible: all subsequent parameter changes will revert due to the

reward update logic.

Remediations to Consider

For timeUnit= 0 :

Requiring the timeUnit value to be always higher than zero.

For rewardsPerUnitTime :

Executing an overflow check and ignoring the rewards result if overflow.

Allowing users to withdraw no matter the staking conditions.

H-1 TokenStake.sol rewards can be over- or under-awarded when the
staking and reward tokens have different decimals

TOPIC

Incorrect Rewards
STATUS

Fixed
IMPACT

Spec Breaking
LIKELIHOOD

High

The documentation for setRewardRatio() explains:

This is correct in cases where the staking and reward tokens have identical decimal values.

Otherwise, rewards will be over- or under-awarded by orders of magnitude equivalent to

the decimal difference.

Remediations to Consider

Consider accounting for both token decimals in reward calculations.

H-2 TokenStake.sol: Tokens with a tax on transfer will account for
inaccurate amounts

TOPIC

Incorrect Rewards / Asset Loss
STATUS

Fixed
IMPACT

Spec Breaking
LIKELIHOOD

High

If a token with on-transfer fees is set up as the staked token, the stake() function will

store an inaccurate amount . As a result:

Rewards will be calculated from higher staked amounts than actually present in the

contract.

Returned amount from getStakeInfo() will not reflect the actual balances of the

contract and staked amount.

Withdrawals of the full staked amount will transfer non-corresponded tokens from

other stakers.

For a TokenStake with a unique stake, calling withdraw with the amount returned

from getStakeInfo() will revert. To claim rewards the user would have to manually

check the balances in the contract and use the actually transferred tokens.

Remediations to Consider

Consider, in the _stake() logic, using the balance of the contract before and after

transferring the tokens to account for the corresponding amounts per staker.

M-1 Block gas limit can be exceeded during setTimeUnit() and

setRewardsPerUnit() when staker count grows

TOPIC

Gas Limit
STATUS

Fixed
IMPACT

Medium
LIKELIHOOD

Low

This applies to all three staking implementations. The admin will no longer be able to call

these functions, preventing the admin from increasing / decreasing / halting staking

reward configuration. The admin may be forced to continue to support the present

configurations, or halt funding entirely: in this case users will have no on-chain signal that

rewards are no longer supported. This can increase the likelihood of cases where user

unclaimedRewards exceeds budgeted supply, resulting in reward loss.

This occurs because these methods calculate and update rewards for every staker in

stakerArray . The gas cost will exceed the current block gas limit of 30M when staker

counts climb past:

~1,000 for TokenStake.sol

~1,000 for NFTStake.sol

~725 for EditionStake.sol

Note that the transaction gas cost may become prohibitively high for admin users well

before the block gas limit is reached, with fewer stakers.

Remediations to Consider

Consider altering the staking and rewards logic to not require state modification for every

staker. One such reference implementation is the Synthetix StakingRewards.sol contract.

Alternatively, consider including these limitations in developer documentation, potentially

also noting increasing gas costs as these limits are approached.

M-2 ERC721 and ERC1155 tokens safe-transferred directly to contract will
be locked and unrecoverable

TOPIC

Locked Assets
STATUS

Fixed
IMPACT

High
LIKELIHOOD

Medium

Once transferred, the token cannot be recovered via withdraw() . This occurs because

NFTStake.sol supports onERC721Received() which allows any safe transfer to succeed,

but only correctly accounts for the staking if stake() is used. Similar conditions exist for

EditionStake.sol.

This finding is not concerned with non-safe transfers of ERC721 tokens: these cannot be

prevented, and are generally discouraged when sending tokens to a new address.

Remediations to Consider

Consider implementing a state variable toggle to allow safe transfers only from within

stake() . A generalized example:

contract ... {
 uint8 private isStaking = 1;

 ...

 function _stake(...) ... {
 ...
 isStaking = 2;
 IERCx(...).safeTransferFrom(...);
 isStaking = 1;
 ...
 }

 function onERCxReceived(...) {
 require(isStaking == 2);
 ...
 }
}

Note that some method locations may need to be refactored to pursue this approach.

M-3 TokenStake.sol: Double entry-point ERC20 tokens could be drained
from the staking contract

function _calculateRewards(address _staker) internal view virtual returns (uint256 _rewards) {
 Staker memory staker = stakers[_staker];
 _rewards = ((((block.timestamp - staker.timeOfLastUpdate) * staker.amountStaked) * rewardsPerUnitTime) / timeUnit);
}

Set rewards per unit of time. Interpreted as (numerator/denominator) rewards per
second/per day/etc based on time-unit. For e.g., ratio of 1/20 would mean 1 reward
token for every 20 tokens staked.

commits: 4f571568a53c7e9403269a3f32cf3965faf36d84, 13a8af2e19f18a1d70d306a9910c57ce7d8cc8cd

https://0xmacro.com/
https://github.com/thirdweb-dev/contracts/tree/a10df026b20c4934d481fb2b1a55853224d28e22
https://github.com/thirdweb-dev/contracts/commit/548d5a9f2f71333f92618dbebf3fb6feef837f34
https://github.com/thirdweb-dev/contracts/commit/20c0b9a4c39398bb1841cb34c1902d533d31f2d9
https://github.com/thirdweb-dev/contracts/tree/13a8af2e19f18a1d70d306a9910c57ce7d8cc8cd
https://github.com/thirdweb-dev/contracts/commit/dc44c159e933f974b248824e343e2d26d197b203
https://github.com/thirdweb-dev/contracts/tree/v3.2.7/docs
https://github.com/thirdweb-dev/contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.0/contracts/utils/math/SafeMath.sol#L42-L57
https://etherscan.io/blocks
https://github.com/Synthetixio/synthetix/blob/v2.79.1/contracts/StakingRewards.sol
https://0xmacro.com/

from the staking contract

TOPIC

ERC20 Exploit
STATUS

Fixed
IMPACT

High
LIKELIHOOD

Low

A double entry-point ERC20 Token is an ERC20 with a proxy pattern that allows users (and

contracts) to interact directly with the target contract, skipping the proxy. Since it is

possible to interact with both the proxy and the target directly, the token has two entry

points.

By setting a TokenStake contract with both these addresses as reward and token, admins

could drain rewards and staked tokens equally.

This issue was presented a few months ago with every Synthetix asset and the TUSD

contract and was later patched after realizing several interactions with DeFi contracts

caused vulnerabilities. Naturally, this does not mean that this vulnerability can never arise

again, as there might be more tokens out there with multiple entry points.

Remediations to Consider

Consider adding a state to track the deposited rewards with a pull mechanism and add or

subtract when adding/claiming rewards to keep rewards and staked amounts

independent.

L-1 Incorrect ERC165 implementation for NFTStake and EditionStake

TOPIC

ERC165 Spec
STATUS

Fixed
IMPACT

Spec Breaking
LIKELIHOOD

Low

ERC165 is not correctly implemented, which will yield false when these contracts are

queried for the interfaces they are intended to support. This may block some token

transfers.

Remediations to Consider

Per the ERC165 spec, consider updating supportsInterface() to also return true when

interfaceId is 0x01ffc9a7 .

Q-1 NFT tokens do not transfer via safeTransferFrom() during stake()

TOPIC

ERC721
STATUS

Fixed
QUALITY IMPACT

Low

Staking721Upgradeable.sol does not use safeTransferFrom() within stake() , rendering

NFTStake.sol’s onERC721Received() unused.

Remediations to Consider

Consider updating stake() logic to call safeTransferFrom() .

Q-2 Normalize support for ERC2771 trusted forwarder

TOPIC

ERC2771
STATUS

Acknowledged
QUALITY IMPACT

Low

The prebuilt contracts NFTStake.sol, EditionStake.sol, TokenStake.sol partially support

trusted forwarders via _msgSender() , but their dependencies do not (e.g. Permissions.sol,

Staking721Upgradeable.sol, etc). Notably, attempts to call Permissions.sol methods:

grantRole() , revokeRole() , renounceRole() , or the onlyRole() modifier on

NFTStake, EditionStake, TokenStake (or contracts derived from them) via trusted forwarder

will apply the changes to the trusted forwarder address, not the intended transaction

originator. This could have unintended consequences, such as inadvertently granting

admin privileges to all transactions sent through a forwarder.

Consider implementing support for _msgSender() in all dependency contracts.

OpenZeppelin does this by adding Context as a common base class. We recommend

something similar. If this is not possible in the short term, we recommend pulling ERC2771

support out from these implementations of TokenStake, NFTStake, EditionStake until a

more wholistic solution is adopted.

RESPONSE BY THIRDWEB

Q-3 Reentrancy init called twice

TOPIC

Code Duplication
STATUS

Fixed
QUALITY IMPACT

Low

__ReentrancyGuard_init() is being called both in the parent (Staking721Upgradeable.sol,

Staking1155Upgradeable.sol, and Staking20Upgradeable.sol) and child (NFTStake.sol,

EditionStake.sol, and TokenStake.sol) contract initialize() functions. Consider

removing this initialization call from the NFTStake.sol, EditionStake.sol, and TokenStake.sol

contracts.

Q-4 Duplicated logic is prone to introducing defects during customization

TOPIC

Extensibility
STATUS

Fixed
QUALITY IMPACT

Low

Staking721Upgradeable.sol — and the ERC20 and ERC1155 counterparts — implement the

following identical logic for updating a single user’s unclaimed rewards within both

_updateUnclaimedRewardsForStake() and _updateUnclaimedRewardsForAll() :

uint256 rewards = _calculateRewards(_staker);
stakers[_staker].unclaimedRewards += rewards;
stakers[_staker].timeOfLastUpdate = block.timestamp;

A user who customizes _updateUnclaimedRewardsForStake() must also remember to

customize _updateUnclaimedRewardsForAll() , otherwise unexpected defects may be

introduced.

Rather than duplicating logic, consider calling _updateUnclaimedRewardsForStake() from

_updateUnclaimedRewardsForAll() .

Q-5 unitTime and rewardsPerUnitTime setter functions don’t check for
new input data

TOPIC

Validation
STATUS

Fixed
QUALITY IMPACT

Low

Admins can mistakenly call these functions with the same value already set, unnecessarily

incurring considerably high gas costs, depending on the number of stakers. To avoid this,

consider requiring different input data from the already stored values.

Q-6 getStakeInfo should be external

TOPIC

Extensibility
STATUS

Fixed
QUALITY IMPACT

Low

This view function performs multiple loops on unbounded arrays. For an external view

function it won’t be an issue, but since the function visibility is public it could suggest the

use of it from inside the contract. Consider updating this method to be external .

Q-7 Missing reward balance information

TOPIC

User Experience
STATUS

Fixed
QUALITY IMPACT

Low

Staking contracts provide no ready insight into reward balances or withdrawals. Users will

have to locate and inspect transaction activity of the reward token contract to confirm

availability of rewards.

Consider increasing the availability of reward metadata on-contract. For example:

Adding a view method to return present reward balance

Emitting an event when withdrawRewardTokens() is called.

Q-8 Staking1155Upgradeable claimRewards function for each token id

TOPIC

User Experience
STATUS

Wont Do
QUALITY IMPACT

Low

For ERC1155 staking contracts (EditionStake.sol and Staking1155Upgradeable.sol), the

claimRewards() function differs from the other two staking contracts; this one is done

for each tokenId individually, different from claiming all rewards with one call the other

contracts have. This implies every user would need to execute one transaction for each

tokenId staked, causing high amounts of gas and actions for a non-fungible ERC1155

design.

EditionStake.sol supports multi-call, which might be a solution when using that contract

specifically, but not for contracts inheriting from Staking1155Upgradeable.

Consider having a function for claiming all rewards for the total amount of tokens staked

and one for individual claims per token ID if desired.

G-1 Halt array iteration after staker removed during withdraw()

TOPIC

Gas Optimization
STATUS

Fixed
GAS SAVINGS

Low

See Staking721Upgradeable.sol:

for (uint256 i = 0; i < stakersArray.length; ++i) {
 if (stakersArray[i] == msg.sender) {
 stakersArray[i] = stakersArray[stakersArray.length - 1];
 stakersArray.pop();
 }
}

This will cycle over the entire stakerArray , even after the intended operation is

completed. Consider calling break at the end of the if block, as is implemented in the

other two staking contracts (Staking1155Upgreadable.sol and Staking20Upgreadable.sol).

G-2 Loop reading from storage array length

TOPIC

Gas Optimization
STATUS

Fixed
GAS SAVINGS

Low

In Staking721Upgreadable.sol, line 213, we have the following logic inside the _withdraw()

function:

for (uint256 i = 0; i < stakersArray.length; ++i) {
 if (stakersArray[i] == msg.sender) {
 stakersArray[i] = stakersArray[stakersArray.length - 1];
 stakersArray.pop();
 }
}

Both stakersArray.length and starkersArray[i] inside the if statement can be

optimized by storing them in memory, as is currently implemented in the other two

staking contracts (Staking1155Upgreadable.sol and Staking20Upgreadable.sol).

Another optimization is to use the stakersArray[i] =

stakersArray[stakersArray.length - 1] from memory too, this can be added to all

three contracts.

G-3 High gas when calling both setTimeUnit() and

setRewardsPerUnitTime()

TOPIC

Gas Optimization
STATUS

Wont Do
GAS SAVINGS

Low

Admins that want to change both values will need to call each method separately, which

will both invoke _updateUnclaimedRewards() , which can become expensive as the

number of stakers increase.

Consider implementing an additional method to update both settings at once, requiring

only a single call to _updateUnclaimedRewards() .

RESPONSE BY THIRDWEB

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Emergent team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

For Q-2, we want to go ahead with the current implementation. Although
permissions doesn't support the gasless setup, those actions will be limited to
admin, or a few wallets. The purpose right now was to enable gasless for staking
specific txns, for majority of the users. Admin related limitations can be documented
for now. We'll update Permissions and other extensions with gasless setup in later
releases, as these are extended in other contracts as well.

For G-3, we're not making any changes right now. Relying on multicall for updating
both conditions at once.

commits: dc44c159e933f974b248824e343e2d26d197b203, a10df026b20c4934d481fb2b1a55853224d28e22

A partial fix was submitted which did not include an update for Permissions.sol. The Response field

below pertains to the code at this state.

The originally reported issue was partially remediated with the M-1 fixes. A remaining gas issue was

reported during fixes review: "Admins that wish to change both settings at once will end up with two new

entries in the conditions mapping. This incurs extra storage writes for the admin, and incurs extra

storage reads for every user during stake/withdraw/claimRewards. If both updates land in the same

block, it’s just a gas concern as noted. Otherwise, the new condition for the first updated setting will

have a non-zero duration, causing rewards to be accumulated on an unintended (incomplete) staking

configuration." The Response section below pertains to this remaining gas issue.

https://github.com/thirdweb-dev/contracts/commit/0927837e05e2f8669f09dfae4a3e99f0b7821470
https://github.com/thirdweb-dev/contracts/commit/874856ad31e5270ddf0c1631957e821d0a386721
https://github.com/thirdweb-dev/contracts/tree/a10df026b20c4934d481fb2b1a55853224d28e22
https://github.com/thirdweb-dev/contracts/commit/2744f3fdac1a0405b46ddded62623c9938f7823f
https://github.com/thirdweb-dev/contracts/commit/4f571568a53c7e9403269a3f32cf3965faf36d84
https://github.com/thirdweb-dev/contracts/commit/4470dfb67a282d82ff28118ba60f2eb2884f6023
https://github.com/thirdweb-dev/contracts/commit/ccc4d2d38f2b839ff78bdc9972aa9f4d27643036
https://github.com/thirdweb-dev/contracts/commit/2e04cd872c4541c63f2c0b6263a1ad8cd8e67ea8
https://github.com/thirdweb-dev/contracts/commit/ce8c3ab63d770af4a27895d182b78b6ca06269d5
https://github.com/thirdweb-dev/contracts/commit/d5abb53ef89541dad1d7408839eef9a70db839a1
https://hackmd.io/rjL7eQdwRB2mpZ31K4ltmw
https://blog.openzeppelin.com/compound-tusd-integration-issue-retrospective/
https://eips.ethereum.org/EIPS/eip-165
https://github.com/thirdweb-dev/contracts/blob/v3.2.7/contracts/extension/Staking721Upgradeable.sol#L188
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Context.sol
https://github.com/thirdweb-dev/contracts/blob/v3.2.7/contracts/extension/Staking721Upgradeable.sol#L213-L218
https://github.com/thirdweb-dev/contracts/blob/v3.2.7/contracts/extension/Staking721Upgradeable.sol#L213-L218

