
Thirdweb A-2
Security Audit

June 24th, 2022

Version 1.0.0

Prepared by

0xMacro.com

Introduction 3

Overall Assessment 3

Specification 3

Source Code 4

Methodology 9

Issues Descriptions and Recommendations 10

Severity Level Reference 11

[H-01] Wrapped ETH cannot be unwrapped 12

[H-02] Batch reveal can be permanently corrupted 12

[L-01] Unpermissioned renounceRole call can corrupt roleMembers state 13

[L-02] Incorrect supportsInterface implementation 13

[L-03] LazyMint of a new batch can affect previous batch 14

[L-04] Incorrect handling of invalid role approvals/removals 14

[L-05] Incorrect processing of role approval in PermissionsEnumerable.sol 15

[L-06] claimCondition.startTimestamp is not enforced 15

[L-07] Unsafe usage of msg.value 16

[Q-01] Emitted TokensLazyMinted event does not match spec 16

[Q-02] Upgradable contracts missing __gap variable 17

[Q-03] Event indexing 17

[Q-04] Missing natspec comments 18

[Q-05] Visibility for identified methods can be changed from public to external 18

Gas Optimizations 18

Automated Analysis 20

Slither 20

ERC721 conformance 20

Disclaimer 22

2

Introduction
This document includes the results of the security audit for thirdweb’s smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from June 1, 2022 to June 17, 2022.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for security,

as no single audit is guaranteed to catch all possible bugs.

Overall Assessment
We identified a few issues of non-severe to high severity. thirdweb was quick to respond

and fix these issues.

Specification
Our understanding of the specification was based on the following sources:

● Discussions on Slack with the thirdweb team.

● The official website, developer documentation and more specifically provided

documentation for contracts which were in scope of the performed audit

Multiwrap, DropERC1155 and SignatureDrop.

3

https://thirdweb.com/
https://portal.thirdweb.com/
https://github.com/thirdweb-dev/contracts/blob/multiwrap-audit-1.1/contracts/multiwrap/multiwrap.md
https://github.com/thirdweb-dev/contracts/blob/dropERC1155-audit-macro/contracts/drop/drop.md
https://github.com/thirdweb-dev/contracts/blob/v2.3.13/contracts/signature-drop/signatureDrop.md

Source Code
The following source code was reviewed during the audit:

Repository Commit

Github (Multiwrap) e33de553cfcdbcaa7c0a179756488b4e1238291a

Github (DropERC1155) f10d5433f004260ed80ca877e5427fb273e2f40c

Github (SignatureDrop) e1c2115c31a8be5e1453820b144c3ade01460f9a

Specifically, we audited the following contracts as part of Multiwrap contract audit:

Repository Sha256

contracts/multiwrap/Multiwrap.sol

ceaaa52ceda0943f7fdf6044280189ca3a0

7bc8c8c5ee90d0aea3c29268f9a4b

contracts/feature/ContractMetadata.sol

df3db74a134e523735fc9915a8cd52f6d55

dcad26fcbff4fd00e619f2a93bc7b

contracts/feature/Royalty.sol

f2ba6cef6221bc122452c8d7ba7aed1a70d

e6d52fcc9f280a85205c1440b3d79

contracts/feature/Ownable.sol

195496f2b9e8218a5e6bb92243ad9f6e5b

aa72104559807a38e069ca7c9257e5

contracts/feature/Permissions.sol

a2af3b9cdb65c69e3943113a824490c244

e68a1e632c750a3b89d95f0c6186d6

contracts/feature/PermissionsEnumerable.

sol

27e09155f457aa32cd1c51f892dbdee980

6d7bfa9bc985b565283463a07b0dba

contracts/feature/TokenBundle.sol

492880c72765692ca59c1baecfa55d1a58

753708a23377efbeff45793b055bc4

contracts/feature/TokenStore.sol

8b0ca57cbedbf8eb62b3ecd0a4e8bb51f84

5f26dabe70c41bd5056c9479d2517

4

https://github.com/thirdweb-dev/contracts/tree/multiwrap-audit-1.1
https://github.com/thirdweb-dev/contracts/tree/v2.3.8
https://github.com/thirdweb-dev/contracts/tree/v2.3.13

contracts/lib/CurrencyTransferLib.sol

052c1c014b8169fdb02a9daa37b5edfbbbf

9c883d89fcfe4ea3717810fecc76c

contracts/openzeppelin-presets/metatx/ER

C2771ContextUpgradeable.sol

4ef0ce1601048c10a4b0fdc3247062be8f1

a9ca0441c862ddfadc16251a31edb

contracts/interfaces/IMultiwrap.sol

d54f071277c95834259df0378bb569ce80

132ba1adacb97a6eb71758395968b6

contracts/feature/interface/IContractMeta

data.sol

453c5d2cecd21718181c667c95e89e0dc4

e6ee0df3df7e2152f93ebdcbde06f2

contracts/feature/interface/IRoyalty.sol

6eb343aa794e6e30bbb1c8c7a6d09d8b38

0614dc6ca2ede1fb8d86908a38c409

contracts/feature/interface/IOwnable.sol

e588d8e1d498f6c1ea9cdc308914c8284a

417cf3f18f9a2e9583111aa69962f0

contracts/feature/interface/IPermissions.s

ol

333d596baf00c08da55bc1671da3f5df65c

4a1d9e8d5639e910d1c23ffb7f980

contracts/feature/interface/IPermissionsEn

umerable.sol

5993fac74a2908a778d21786cf0542f32c8

c57d05a03321175b630948bf4913e

contracts/feature/interface/ITokenBundle.s

ol

fe05e8c4123da579aab2a92efe43b925e81

443c870ac05b0f3b99bcaee0321bb

We audited the following contracts as part of DropERC1155 contract audit

Repository Sha256

contracts/drop/DropERC1155.sol

224b5233428ef803c6e875868945b840ec

59f9694d1ce4dc42ee29b0e8fef582

contracts/lib/FeeType.sol

3d2ede585eb7e37872a0f3566a143f5b2a

a586873160966d34c98963015f622d

contracts/lib/MerkleProof.sol

cf3d021220b40ba34a503595000419df65

76fabb4309dc3c265abe4ad21a25c8

contracts/lib/CurrencyTransferLib.sol

052c1c014b8169fdb02a9daa37b5edfbbbf

9c883d89fcfe4ea3717810fecc76c

5

contracts/openzeppelin-presets/metatx/ER

C2771ContextUpgradeable.sol

4ef0ce1601048c10a4b0fdc3247062be8f1

a9ca0441c862ddfadc16251a31edb

contracts/interfaces/IThirdwebContract.sol

8fc9d29ddee99b052ccdc521c272ee4df8a

7de0e1754bfcba397dc5cdfa18c72

contracts/feature/interface/IPlatformFee.s

ol

a40ab9eb32bb694e01aed83c32e19e713f

6686d5c10c41ceab2a962b65d954ae

contracts/feature/interface/IPrimarySale.s

ol

19fc349c2d09c7c3cf629010ac376f9e598

76c753c7375dc0cd0d9962db2dea4

contracts/feature/interface/IRoyalty.sol

6eb343aa794e6e30bbb1c8c7a6d09d8b38

0614dc6ca2ede1fb8d86908a38c409

contracts/feature/interface/IOwnable.sol

e588d8e1d498f6c1ea9cdc308914c8284a

417cf3f18f9a2e9583111aa69962f0

contracts/interfaces/ITWFee.sol

4c57ef2e5572551ee29ec7ecfcb67932f15

2f7b0ffd1e5c84e0976f577eb43c5

contracts/interfaces/drop/IDropClaimCond

ition.sol

acfcfa34578efe1c51d17c0506f3ee726144

2bd6dcec49196a571918929c5a51

contracts/interfaces/drop/IDropERC1155.s

ol

440080243336aee49d674627c1a1dbc53f

d7f75adc99bbebb93ee10f6a5d04c0

We audited the following contracts as part of SignatureDrop contract audit

Contract Sha256

contracts/signature-drop/SignatureDrop.so
l

b61014572ce0e07b44c5814570eb0efe23
e9302c8660a5629f6cc47a3c983f6e

contracts/feature/ContractMetadata.sol
883965fe2c88a3ea36b56fbd780554485e
e8c9bd5ac1d82f87dfa27cdf38820c

contracts/feature/PlatformFee.sol
5761f4a8b9a1bd90070a09091a94e50370
616002ef0825299d54120324f7020d

contracts/feature/PrimarySale.sol
6f472f7d77830b4924862b9e33e1cea34a
1d7be30cba0ca4d99b76acc63eee11

contracts/feature/Royalty.sol 3faf5a5fb83fafc6169f3d0a97d9186e5b3e

6

0a178bbb99db3cb849691df3a87e

contracts/feature/DelayedReveal.sol
48df35ee1e617f6cd5ed52d1490719a121
37ba77eb88df82aeed12140f3eceb8

contracts/feature/DropSinglePhase.sol
58af5a7c6e04de4cefb82f1d74a1f6c8875f
c76469b05f3c595ca81faae1cae4

contracts/feature/LazyMint.sol
0f7aa682dd9c83e1b108d55c0a8b879dc4
ee8fec582a9de3b36c3e24696d4d23

contracts/feature/Ownable.sol
fa86e93306669311a74343ad50cbe53344
2792f8091e810763dc6125fd710cb0

contracts/feature/Permissions.sol
e07a0b4d807e31b6297677887ad704e79
e45cf15eecba710949d3a92d078ee69

contracts/feature/PermissionsEnumerable.
sol

27e09155f457aa32cd1c51f892dbdee980
6d7bfa9bc985b565283463a07b0dba

contracts/openzeppelin-presets/metatx/ER
C2771ContextUpgradeable.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/lib/CurrencyTransferLib.sol
052c1c014b8169fdb02a9daa37b5edfbbbf
9c883d89fcfe4ea3717810fecc76c

contracts/feature/SignatureMintERC721U
pgradeable.sol

f83b0704e73d831f8d448a798c1a7eaf2b0
dca156e276881c1cce925c3fd2c43

contracts/feature/interface/IClaimConditio
n.sol

0dbad456208d0d05608647c27de0aee95e
92fd288e364cf552ecffe6aff2bcaa

contracts/feature/interface/IContractMeta
data.sol

453c5d2cecd21718181c667c95e89e0dc4
e6ee0df3df7e2152f93ebdcbde06f2

contracts/feature/interface/IDelayedRevea
l.sol

c6b5754ca0a19df8950b36b26ecef66b1c8
408ed2dff305dbfbed9f4d9bf1e05

contracts/feature/interface/IOwnable.sol
e588d8e1d498f6c1ea9cdc308914c8284a
417cf3f18f9a2e9583111aa69962f0

contracts/feature/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/feature/interface/IPermissionsEn
umerable.sol

5993fac74a2908a778d21786cf0542f32c8
c57d05a03321175b630948bf4913e

contracts/feature/interface/IPlatformFee.s
ol

a40ab9eb32bb694e01aed83c32e19e713f
6686d5c10c41ceab2a962b65d954ae

7

contracts/feature/interface/IPrimarySale.s
ol

19fc349c2d09c7c3cf629010ac376f9e598
76c753c7375dc0cd0d9962db2dea4

contracts/feature/interface/IRoyalty.sol
6eb343aa794e6e30bbb1c8c7a6d09d8b38
0614dc6ca2ede1fb8d86908a38c409

contracts/feature/interface/ISignatureMint
ERC721.sol

3fa03ed9c11deac6a8ab645465ee1b1160
4a7818cdb59b3ddc34c9b8dd5ec93e

contracts/feature/interface/IDropSinglePh
ase.sol

aa7a6dbeb9599756597bfc7426ed9331aa
a6a8c977fb31b29defb721917dcc03

contracts/feature/interface/ILazyMint.sol
9cf7240f6527a848c1aa5267db2794fde9c
bd8f11c3e5f9f6b0ac0ceca13eb4d

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

8

Methodology
The audit was conducted in several steps.

First, we reviewed in detail all available documentation and specifications for the project,

as described in the ‘Specification’ section above.

Second, we performed a thorough manual review of the code, checking that the code

matched up with the specification, as well as the spirit of the contract (i.e. the intended

behavior). During this manual review portion of the audit we primarily searched for

security vulnerabilities, unwanted behavior vulnerabilities, and problems with systems of

incentives.

Third, we performed the automated portion of the review consisting of measuring test

coverage (while also assessing the quality of the test suite) and evaluating the results of

various symbolic execution tools against the code.

Lastly, we performed a final line-by-line inspection of the code – including comments –in

effort to find any minor issues with code quality, documentation, or best practices.

9

Issues Descriptions and Recommendations
Issues Descriptions and Recommendations 10

Severity Level Reference 12

[H-01] Wrapped ETH stuck in contract 13

[H-02] Batch reveal can be permanently corrupted 13

[L-01] Public renounceRole() call can corrupt roleMembers state 14

[L-02] Incorrect supportsInterface implementation 15

[L-03] LazyMint of a new batch can affect previous batch 16

[L-04] Incorrect handling of invalid role approvals/removals 17

[L-05] Incorrect processing of role approval 18

[L-06] claimCondition.startTimestamp is not enforced 19

[L-07] Unsafe usage of msg.value 19

[Q-01] Emitted TokensLazyMinted event does not match spec 20

[Q-02] Upgradable contracts missing __gap variable 20

[Q-03] Event indexing 21

[Q-04] Natspec documentation 21

[Q-05] Change visibility from public to external 22

[G-01] Reduce the number of loops in Multiwrap#wrap and Multiwrap#unwrap 22

[G-02] Refactor TokenBundle#_setBundle() 22

[G-03] Remove unnecessary checks in CurrencyTransferLib 23

[G-04] Reduce the length of string error messages 23

[G-05] Return early in PermissionsEnumerable#getRoleMember 23

Automated Analysis 24

Slither 24

ERC721 conformance 24

Disclaimer 26

10

Severity Level Reference

Level Description

High The issue poses existential risk to the
project, and the issue identified could lead

to massive financial or reputational
repercussions.

We highly recommend fixing the reported
issue. If you have already deployed, you

should upgrade or redeploy your
contracts.

Medium The potential risk is large, but there is
some ambiguity surrounding whether or
not the issue would practically manifest.

We recommend considering a fix for the
reported issue.

Low The risk is small, unlikely, or not relevant to
the project in a meaningful way.

Whether or not the project wants to
develop a fix is up to the goals and needs of

the project.

Code Quality
The issue identified does not pose any

obvious risk, but fixing it would improve
overall code quality, conform to

recommended best practices, and perhaps
lead to fewer development issues in the

future.

Gas Optimizations The presented optimization suggestion
would save an amount of gas significant
enough, in our opinion, to be worth the
development cost of implementing it.

11

[H-01] Wrapped ETH stuck in contract

Fixed by a39685a9a568ca19bf10ab98ff8b9c4fa6a3f311

Multiwrap.sol supports receiving ETH by auto-wrapping incoming ETH to WETH. It does

this by converting native tokens in CurrencyTransferLib through interaction with external

WETH contract. After wrapping, the Multiwrap contract holds on to the wrapped native

tokens until an unwrap is requested.

However, Multiwrap’s WETH integration is missing a required receive() external

payable function. When the user invokes unwrap(), for an asset with underlying ETH,

it always reverts. Primary reason for that is the WETH contract cannot transfer back

native tokens to Multiwrap due to missing receive() . As a result, the user's ETH is

permanently stuck in the WETH contract, and the user cannot retrieve back his assets.

Consider implementing the receive() function to fix this issue.

[H-02] Batch reveal can be permanently corrupted

Fixed by 500f6562df3843cc1169dd983197071c0ab1adee

In SignatureDrop.sol, the reveal() function is used to replace placeholder tokenBaseUri

for a particular batch with final tokenBaseUri based on previously provided encrypted

string. reveal() function is protected and callable by a user with privileged role MINTER.

The reveal() function uses and relies on the getRevealURI function to retrieve decrypted

final tokenBaseUri. For proper reveal(), getRevealURI must not revert.

However, in DelayedReveal.sol, getRevealURI is a public function and can be called by

anyone. Also, this function can be successfully executed only once. The last line in this

function modifies the state due to which all followup executions will revert. That would

not be an issue if only legitimate invocation would be possible.

function getRevealURI(uint256 _batchId, bytes calldata

_key) public returns (string memory revealedURI) {

12

bytes memory encryptedURI = encryptedBaseURI[_batchId];

require(encryptedURI.length != 0, "nothing to

reveal.");

revealedURI = string(encryptDecrypt(encryptedURI,

_key));

delete encryptedBaseURI[_batchId];

}

However, an attacker may simply invoke getRevealURI with any key to cause a

permanently invalid contract state for a not yet revealed batch. That is because the

encryptDecrypt function will return value even if an incorrect _key is provided by the

caller.

Consider changing getRevealURI visibility to internal. In addition, consider introducing an

extra argument to getRevealURI, e.g. expectedRevealedURI and corresponding guard

condition to check if expectedRevealedURI matches revealedURI generated by

encryptDecrypt method. This additional check may prevent contract owner from

intentionally or accidentally breaking their batch reveal when they provide an incorrect

decryption key.

[L-01] Public renounceRole() call can corrupt roleMembers state

Fixed by e8d957936075f6fcc9b927a9c5b61c07b89db45b

In Multiwrap.sol, an public invocation of PermissionsEnumberable#renounceRole() with a

valid role argument can corrupt state in the PermissionsEnumberable#roleMembers

variable for that particular role. Take the following example call trace:

PermissionsEnumerable#renounceRole(minter_role, Alice)

Permissions#renounceRole(minter_role, account)

Permissions#_revokeRole(minter_role, account)

13

PermissionsEnumerable#removeMember(minter_role, account)

And the following implementation of removeMember():

function _removeMember(bytes32 role, address account) internal {

uint256 idx = roleMembers[role].indexOf[account];

delete roleMembers[role].members[idx];

delete roleMembers[role].indexOf[account];

}

When _removeMember() is called with a valid role and unknown account, idx is 0,

causing the contract to remove an unrelated member in the following line. This results in a

corrupted state.

Consider updating Permissions.sol#renounceRole to check if the account actually has

the role that is being renounced.

[L-02] Incorrect supportsInterface implementation

Fixed by a3d7cc8403469061a89bdb82d742b6eb2adb4916

In Multiwrap.sol, the supportsInterface() function overrides both ERC1155Receiver's

and ERC721Upgradeable's implementations:

function supportsInterface(bytes4 interfaceId)

public

view

virtual

override(ERC1155Receiver, ERC721Upgradeable)

returns (bool)

{

return

super.supportsInterface(interfaceId) ||

interfaceId == type(IERC721Upgradeable).interfaceId ||

14

interfaceId == type(IERC2981Upgradeable).interfaceId;

}

Due to how multiple inheritance works in Solidity, calling superwill not invoke the

supportsInterface() implementations for both parent contracts. As a result, this

contract will not be recognized as an ERC1155Receiver by external contracts, possibly

blocking integration.

Consider updating supportsInterface() to properly advertise ERC1155Receiver support

like so:

function supportsInterface(bytes4 interfaceId)

public

view

virtual

override(ERC1155Receiver, ERC721Upgradeable)

returns (bool)

{

return

interfaceId == type(IERC2981Upgradeable).interfaceId ||

ERC1155Receiver.supportsInterface(interfaceId) ||

ERC721Upgradeable.supportsInterface(interfaceId);

}

[L-03] LazyMint of a new batch can affect previous batch

Fixed by 382f23c6e1044e9d16dc847577bffbc3c75af81e

In SignatureDrop.sol, the default contract admin can lazy mint a batch with 0 tokens by

calling lazyMint() function. As a result, the internal identifier for the new empty batch

becomes the same as the identifier for the previous batch. Due to this identifier overlap,

followup actions targeting the new batch result in changes for the previous batch. This

15

allows an admin to overwrite tokenBaseURI for the previous batch maliciously or

accidentally by calling reveal() for new batch as depicted in the following test:

function test_delayedReveal_withNewLazyMintedEmptyBatch() public {

vm.startPrank(deployerSigner);

bytes memory encryptedURI = sigdrop.encryptDecrypt("ipfs://",

"key");

sigdrop.lazyMint(100, "", encryptedURI);

sigdrop.reveal(0, "key");

string memory uri = sigdrop.tokenURI(1);

assertEq(uri, string(abi.encodePacked("ipfs://", "1")));

bytes memory newEncryptedURI =

sigdrop.encryptDecrypt("ipfs://secret", "key");

sigdrop.lazyMint(0, "", newEncryptedURI);

sigdrop.reveal(1, "key");

// token uri for token 1 is overwritten and it shouldn't

string memory newUri = sigdrop.tokenURI(1);

assertEq(newUri, string(abi.encodePacked("ipfs://secret", "1")));

vm.stopPrank();

}

Consider adding a guard to prevent SignatureDrop#lazyMint being invoked with 0

_amount.

[L-04] Incorrect handling of invalid role approvals/removals

Fixed by 0fb253fce0e728b3400c40f65e1e017a5807c22e

16

Permissions.sol’s implementation allows granting the same role to an account multiple

times. Also, it allows removing a role from an account that doesn't have that role. This may

result in unexpected RoleGranted and RoleRevoked event emissions. Moreover, it can

introduce additional issues in child contracts, such as PermissionsEnumerable.sol, which

are not expecting nor properly handling these cases.

Consider adding guards in Permissions.sol to prevent granting the same role to a

particular account, and to prevent removing a role from an account that doesn't actually

have the target role.

[L-05] Incorrect processing of role approval

Fixed by c7ae40424b72eac1736184249cf45fd06ee1787e

In SignatureDrop.sol, a call to grantRole() results in the

PermissionsEnumerable#_addMember() internal function being called two times. As a

result, the roleMembers[role].members storage variable contains unwanted duplicate

records.

Consider updating PermissionsEnumerable#grantRole to not call _addMember(), since it

will already be executed as part of downstream processing.

17

[L-06] claimCondition.startTimestamp is not enforced

Fixed by e7a11f95e767c1deaa053a09d496984bac022568

The SignatureDrop specification describes claimCondition.startTimestamp as follows:

The unix timestamp after which the claim condition applies. The same

claim condition applies until the startTimestamp of the next claim

condition.

Based on the above description, SignatureDrop users may create a claimCondition to

enable token claiming at a specific time in the future. However, in DropSinglePhase.sol's

claim function, startTimestamp is not checked. This allows users to start claiming

immediately, even if startTimestamp is set in the future.

Consider updating the implementation to check if startTimestamp condition has been

satisfied or updating documentation related to startTimestamp to make it clear that it is

not enforced.

[L-07] Unsafe usage of msg.value

Fixed by ed6d60af9dd3c7acdb163416f5b5674e7db185f6

Multiwrap.sol relies on CurrencyTransferLib#transferCurrencyWithWrapper() for

proper operation. In this method, msg.value is used to check if necessary assets have

been provided.

However, note that transferCurrencyWithWrapper() is called within a loop. Although not

an issue today, if the parent contract later supports holding ETH via an upgrade, the new

functionality may be vulnerable to having assets drained from the contract.

18

Consider not relying on msg.value directly in a library function which can be executed in a

loop, and instead refactor code to execute necessary checks on a more higher/appropriate

level.

[Q-01] Emitted TokensLazyMinted event does not match spec

Fixed by ac789394c99342f6e56497b14768a22e53061143

In SignatureDrop#lazyMint method TokensLazyMinted event is emitted in following way

emit TokensLazyMinted(startId, startId + _amount, _baseURIForTokens,

_encryptedBaseURI);

DropERC721.sol another contract which has similar functionality emits this event in the

following way. Notice difference in second argument.

emit TokensLazyMinted(startId, startId + _amount - 1,

_baseURIForTokens, _encryptedBaseURI);

Consider updating TokensLazyMinted event emission in SignatureDrop#lazyMint to

match specification.

[Q-02] Upgradable contracts missing __gap variable

Acknowledged

Upgradable contracts in the hierarchy of contracts need to have __gap variable in order

for future changes not to break contract storage.

Response: Contracts aren’t meant to be upgradeable and the missing __gap variable is

intended.

19

[Q-03] Event indexing

Fixed by 076687de665b1d505ebbb2b2d777ed34b81d30bc

Several events could benefit from indexing:

● event OwnerUpdated - prevOwner and newOwner

● event TokensLazyMinted – startTokenId

● event TokenURIRevealed – index

● event DefaultRoyalty – newRoyaltyRecipient

● event RoyaltyForToken – royaltyRecipient

● event PlatformFeeInfoUpdated – platformFeeRecipient

● event TokensClaimed – startTokenId

[Q-04] Natspec documentation

Fixed by 83c99cfe018bf2fe9a09731b3bb075e6327dbdd2

Missing more detail natspec comments for some of the features (see

IClaimCondition.sol as a reference):

● IDelayedReveal.sol, DelayedReveal.sol

● IContractMetadata.sol, ContractMetadata.sol

● IDropSinglePhase.sol

● ILazyMint.sol, LazyMint.sol

● IOwnable.sol, Ownable.sol

● IPermissions.sol, Permissions.sol

● IPlatformFee.sol, PlatformFee.sol

● IPrimarySale.sol, PrimarySale.sol

● IRoyaltyInfo.sol, RoyaltyInfo.sol

20

[Q-05] Change visibility from public to external

Fixed by ba4e4fe7054e0d5cc74c567ff37851429993d0ac

Visibility for following methods can be changed from public to external:

● Permissions#getRoleAdmin

● SignatureDrop#burn

[G-01] Reduce the number of loops in Multiwrap#wrap and

Multiwrap#unwrap
Status: Not fixing

Wrap executes three loops, all for iterating tokens.

● 1st loop - to check if asset is allowed

● 2nd loop - wrap > _storeTokens > _setBundle()

● 3rd loop - wrap > _transferTokenBatch

All of the above can be combined in one loop, saving gas costs. The same can be said for

unwrap as well, instead of 2 loops, there can be one.

Response: Not fixing, suggested optimization requires refactoring code across several

levels of contract inheritance.

[G-02] Refactor TokenBundle#_setBundle()
Status: Fixed by e7a59e0089c568c9febb4b7b7ea22f2bc2ccaaf5

21

TokenBundle#_setBundle has a code path for updating the bundle, which is unused in

Multiwrap’s context. It's not only unused but it's also executed while creating a bundle.

As a result, whenever this method is invoked an unnecessary condition is checked each

time in the loop, increasing gas costs.

Consider creating two separate functions for create and update.

[G-03] Remove unnecessary checks in CurrencyTransferLib
Status: Fixed by fe70a1d5518c3e977270c3598caec1cfbb28bf42

Following optimizations are done in CurrencyTransferLib.

1. If amount = 0 return, in transferCurrency and transferCurrencyWithWrapper

2. If sender = recipient return, in safeTransferERC20

The optimizations done are logically correct. But the issue is that cases when these checks

are satisfied are very rare, and optimizing for them, though saves gas costs for these edge

cases, increases the gas costs for all other use cases.

Consider removing these optimizations.

[G-04] Reduce the length of string error messages
Status: Fixed by 913e513a70504436fd1385c8bc3e50c5a2ecb5ab

Reduce the length of string error messages to reduce contract size. Also consider using

Solidity 0.8.4+ feature - Custom Errors .

[G-05] Return early in PermissionsEnumerable#getRoleMember
Status: Fixed by f3ad82c89af40edc0a86416b3c1a5d0b1773a05b

22

https://blog.soliditylang.org/2021/04/21/custom-errors/

In method PermissionsEnumerable#gerRoleMember, return early when a match is found

instead of iterating through the whole array on each invocation.

Automated Analysis

Slither
Slither is a solidity static analysis framework. It detects many vulnerabilities, from high

threats to benign ones, of which there are usually many.

In order to run Slither against the codebase we ran the following command and filtered for

relevant files:

● $ slither .

Slither identified many issues; manual inspection revealed that almost all of them to be false

positives. However, [L-07] and [Q-05] have been confirmed as issues.

ERC721 conformance
In order to test ERC721 conformance of SignatureDrop.sol contract we ran the following

command:

● $ slither-check-erc --solc-remaps @=node_modules/@ --erc

ERC721 contracts/signature-drop/SignatureDrop.sol

SignatureDrop

Resulting in following output:

Check functions
[✓] balanceOf(address) is present
[✓] balanceOf(address) -> (uint256) (correct return type)
[✓] balanceOf(address) is view

[✓] ownerOf(uint256) is present

23

https://github.com/crytic/slither

[✓] ownerOf(uint256) -> (address) (correct return type)
[✓] ownerOf(uint256) is view

[✓] safeTransferFrom(address,address,uint256,bytes) is present
[✓] safeTransferFrom(address,address,uint256,bytes) -> () (correct

return type)
[✓] Transfer(address,address,uint256) is emitted

[✓] safeTransferFrom(address,address,uint256) is present
[✓] safeTransferFrom(address,address,uint256) -> () (correct return

type)
[✓] Transfer(address,address,uint256) is emitted

[✓] transferFrom(address,address,uint256) is present
[✓] transferFrom(address,address,uint256) -> () (correct return type)
[✓] Transfer(address,address,uint256) is emitted

[✓] approve(address,uint256) is present
[✓] approve(address,uint256) -> () (correct return type)
[✓] Approval(address,address,uint256) is emitted

[✓] setApprovalForAll(address,bool) is present
[✓] setApprovalForAll(address,bool) -> () (correct return type)
[✓] ApprovalForAll(address,address,bool) is emitted

[✓] getApproved(uint256) is present
[✓] getApproved(uint256) -> (address) (correct return type)
[✓] getApproved(uint256) is view

[✓] isApprovedForAll(address,address) is present
[✓] isApprovedForAll(address,address) -> (bool) (correct return type)
[✓] isApprovedForAll(address,address) is view

[✓] supportsInterface(bytes4) is present
[✓] supportsInterface(bytes4) -> (bool) (correct return type)
[✓] supportsInterface(bytes4) is view

[✓] name() is present
[✓] name() -> (string) (correct return type)
[✓] name() is view

[✓] symbol() is present
[✓] symbol() -> (string) (correct return type)

[✓] tokenURI(uint256) is present
[✓] tokenURI(uint256) -> (string) (correct return type)

Check events
[✓] Transfer(address,address,uint256) is present
[✓] parameter 0 is indexed

24

[✓] parameter 1 is indexed
[✓] parameter 2 is indexed

[✓] Approval(address,address,uint256) is present
[✓] parameter 0 is indexed
[✓] parameter 1 is indexed
[✓] parameter 2 is indexed

[✓] ApprovalForAll(address,address,bool) is present
[✓] parameter 0 is indexed
[✓] parameter 1 is indexed

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Emergent team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

25

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or completeness

of any outcome generated by such software.

26

