
thirdweb A-5
Security Audit

November 11th, 2022
Version 1.0.0

Presented by 0xMacro

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from September 26, 2022 to October 7, 2022.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Medium 1 - - 1

Code Quality 2 - 2 -

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

A provided audit handoff document provided through Notion.

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash:

Specifically, we audited the following contracts:

Contract SHA256

contracts/drop/DropERC20.sol 095c5b160446f675c3832f9166294639cb3
89ceef74be3d51a4bc8339c46423f

contracts/drop/DropERC721.sol cc9d276ed99ce1d54755937c449dddcc28a
40872aa2f8ad4fea8b54fafa83c28

contracts/drop/DropERC1155.sol 2272277a6d1b0f41da26ffc32313adba43a
d3f7fb691371a3fba241f28edfb8b

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

M-1 Merkle claiming and normal claiming occupy the same state space

Q-1 721a Transfer Costs

Q-2 Ability to set individual claim count

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client

should give to fixing the issue. We assign severity according to the table of guidelines

below:

Severity Description

(C-x)
Critical

We recommend the client must fix the issue, no matter what,
because not fixing would mean significant funds/assets WILL
be lost.

(H-x)
High

We recommend the client must address the issue, no matter
what, because not fixing would be very bad, or some
funds/assets will be lost, or the code’s behavior is against the
provided spec.

(M-x)
Medium

We recommend the client to seriously consider fixing the
issue, as the implications of not fixing the issue are severe
enough to impact the project significantly, albiet not in an
existential manner.

(L-x)
Low

The risk is small, unlikely, or may not relevant to the project in
a meaningful way.

Whether or not the project wants to develop a fix is up to the
goals and needs of the project.

(Q-x)
Code Quality

The issue identified does not pose any obvious risk, but fixing
could improve overall code quality, on-chain composability,
developer ergonomics, or even certain aspects of protocol
design.

(I-x)
Informational

Warnings and things to keep in mind when operating the
protocol. No immediate action required.

(G-x)
Gas

Optimizations

The presented optimization suggestion would save an amount
of gas significant enough, in our opinion, to be worth the
development cost of implementing it.

Issue Details

M-1 Merkle claiming and normal claiming occupy the same state space

TOPIC

Data Model
STATUS

Addressed
IMPACT

Medium
LIKELIHOOD

Medium

When claiming, ClaimCondition’s quantityLimitPerWallet is validated and incremented.

This also happens for Merkle proof claiming, a situation where:

An admin creates a merkle node with a specified limit, currency, and price per token

for a specific address

The admin gives the proof of said node to a user

The user mints using said proof, “overriding” the default settings of the current claim

condition.

This all works as advertised. However, both normal claims and Merkle proof claims

validate and increment quantityLimitPerWallet . This means the admin and user are

vulnerable to subtle usage pitfalls. For example, take the following scenario:

Admin creates an NFT drop where each token costs 1 WETH to mint.

Admin wishes to grant user X permission to mint 2 tokens at 0.25 WETH, and 4 tokens

at 0.5 WETH.

In this scenario, several issues may occur:

1. Knowing user X should be able to mint 2 + 4 tokens, admin adds two merkle leaves

with quantityLimitPerWallet set to 6. However, this allows user X to mint 6 tokens

at 0.25 WETH. To do this properly, the admin must update the merkle tree twice – the

second time only after user X has fully minted the first.

2. Knowing user X should only be able to mint 2 and 4 tokens for 0.25 WETH and 0.5

WETH respectively, admin sets one leaf’s quantityLimitPerWallet to be 2, and the

other to be 4. However, this only allows user X to mint 4 tokens total (instead of 6).

3. Knowing user X needs to mint one price at a time, admin sets one leaf’s

quantityLimitPerWallet to be 2 for 0.25 WETH. However, in the meantime, user X

has minted one token at the normal price; they can now only claim 1 token at the

discounted price.

Other contracts / software systems that maintain merkle trees for these drop contracts

might also create more severe vulnerabilities for themselves.

To help avoid the above confusions, consider:

1. Adding an optional namespace key in struct AllowlistProof , to allow limitations

per topic (e.g. a specific currency/price) instead of just per address; or

2. Documenting the limitations & pitfalls of the current implementation.

Q-1 721a Transfer Costs

TOPIC

Use Cases
STATUS

Wont Do
QUALITY IMPACT

Low

Transferring a token from a large mint batch may cost a very high amount of gas.

Consider implementing an optional max batch size, and consider including / referring to

docs about how to optimally transfer minted tokens (example).

RESPONSE BY THIRDWEB

Q-2 Ability to set individual claim count

TOPIC

Use Cases
STATUS

Wont Do
QUALITY IMPACT

Low

In the previous version of the contracts, a setWalletClaimCount() function was available

for an admin to manually set an addresses’s claim count.

In the current version, no such function exists.

Consider implementing a similar function, if it is desirable for an admin to be able to

manually update these values without having to deal with merkle proofs.

RESPONSE BY THIRDWEB

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Emergent team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Not fixing.

Moving to ERC721-A for all NFT Drops.

Not fixing right now.

Documented the limitations of new design.

https://0xmacro.com/
https://github.com/thirdweb-dev/contracts/commit/6ce0b210a1b4a5c3975c23de06e74d94c95d00fb
https://github.com/thirdweb-dev/contracts
https://github.com/chiru-labs/ERC721A/issues/145
https://www.alchemy.com/blog/erc721-vs-erc721a-batch-minting-nfts
https://0xmacro.com/

